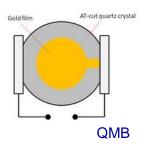
2012 International Breath Analysis Meeting

Sensor Devices Applied to Breath Diagnostics Research

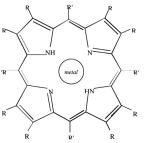

Presented by:

Timothy Burch, CEO
Sensigent
Intelligent Sensing Solutions




Sensor and Sensor Arrays Devices

- <u>Transducers</u> measure changes in a signal property
 - Electrical resistors, capacitors, transistors (FET)
 - Mass QMB, SAW, tuning forks (change in frequency or piezoresistance)
 - Optical fiber optics & optrodes with LED source & photodetector; CCD array, visual
- Sensing Elements chemically-sensitive materials often applied as thin films
 - Conductive polymers
 - Redox / acid-base indicators
 - Metalloporphyrins
 - Metallic oxides (SnO₂, WO₃, TiO₂)
 - Metallic nanoparticles (Au, Pt, Pd) and nanowires
 - Composites of polymers and conductors (carbon, metallic particles)
 - Carbon-based semiconductors: carbon nanotubes, graphene



- Chemically- modified carbon nanotubes
- Chemically-modified graphene
- Algorithms and Software interpret the response to provide actionable result
 - Single sensors: Change in resistance, absorbance, wavelength above a set threshold metalloporphyrin
 - Multi-sensor arrays: Pattern recognition and classification algorithms for array response
 e.g., PCA (unsupervised) and CDA or SVM (supervised)

resistor

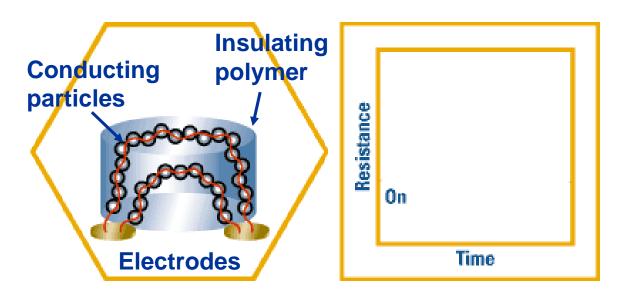
Pd on CNTs

Cyranose™ 320 Handheld Instrument

Fully-Integrated Sensing Instrument

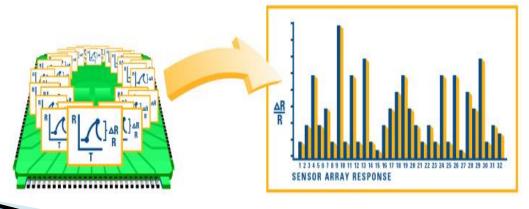
sampling system, sensor array, software

Consistent, Robust, Reliable Manufacturing


- 1000's of systems in use worldwide
- many systems in regular use for 10 yrs or more
- more than 180 3rd party industrial QC publications (2020)
- more than 250 3rd party medical research publications (2020)

Stable, Robust, Reliable Sensors

- nanocomposite sensors exhibit high sensitivity (ppm to ppb)
 for volatile and semi-volatile organic compounds (VOCs)
- sensor technology used in high-throughput product inspection (>1,000,000 sniffs per year in eNose Aqua for OEMs)
- over 60 patents for sensors, detector and applications



Nanocomposite Sensor Technology

Vapor passes over the polymer matrix and produces a change in dc resistance for each sensor

32 chemical sensors in standard array

Using pattern matching algorithms, the data is converted into a unique response pattern (PCA, CDA, ANN, SVM)

Select Cyranose Publications 2002 - 2012

University of Pennsylvania uses handheld eNose for pneumonia, CSF and sinusitis research in the ER and outpatient clinic

Lai, S. et al. <u>Identification of upper respiratory bacterial pathogens with the electronic nose</u>. Laryngoscope. 112(6) 975-9 (2002); Aronzon, A. et al. <u>Differentiation between cerebrospinal fluid and serum with electronic nose</u>. Otolaryngol Head Neck Surg 133(1) 9-16 (2005); Thaler, ER, Hanson, CW. <u>Use of an electronic nose to diagnose bacterial sinusitis</u>. American Journal of Rhinology, 20(2) 170-172 (2006)

Cleveland Clinic uses handheld eNose for lung cancer research

Machado, R. et al Detection of Lung Cancer by Sensor Array Analyses of Exhaled Breath. Am. J. Respir. Crit. Care Med. 171(11) 1286-1291 (2005)

University of Amsterdam uses handheld eNose for COPD, asthma and cancer

Dragonieri, S. et al. An electronic nose in the discrimination of patients with asthma and controls. J Allergy Clin Immunol. 120(4): 856-62 (2007); Dragonieri, S. et al. An electronic nose in the discrimination of patients with non-small cell lung cancer and COPD. Lung Cancer 64(2) 166-70 (2009); Lazar, Z. et al. Electronic nose breathprints are independent of acute changes in airway caliber in asthma. Sensors 10(10) 9127-38 (2010); Fens, N. et al. Exhaled air molecular profiling in relation to inflammatory subtype and activity in COPD. Eur Respir. J. 38 1301-1309 (2011).

Research teams around the world use the handheld eNose: Australia, New Zealand, Germany, Hungary, Italy ...

Dent, A. et al. <u>Electronic nose distinguishes lung cancer from healthy smoking controls</u>. Supplement to Journal of Thoracic Oncology: (2010); Hattesohl AD, et al. <u>Discrimination between COPD patients with and without alpha 1-antitrypsin deficiency using an electronic nose</u>. Respiratory Disease Diagnosis 16(8) 1258-64 (2011); Chapman, EA et al. <u>A breath test for malignant mesothelioma using an electronic nose</u>. Eur Respir J. December 2011. Timms, C. et al. <u>Detection of gastro-oesophageal reflux disease (GORD) in patients with obstructive lung disease using exhaled breath profiling</u>. J Breath Res. January 2012.

Select Cyranose Medical Research Publications: 2000 - 2012

Subject	Years	Publications
Lung Cancer	2005 - 2012	7
Other Respiratory Diseases	2007 - 2012	11
Bacterial Infection	2000 - 2011	18
Other Conditions	2005 - 2012	7
Additional Studies in Progress and Planned	2010 - 2014	several papers submitted and in preparation

2020 Update:

Now over 250 peer-reviewed clinical research publications using the Cyranose 320

FDA Approved Breath Tests to 2010

Detected Molecule	Disease/ Condition	Trade Names	Techniques	Manufacturers	Approved
Alcohol	Alcohol intoxication Breath alcohol	AlcoMate, AlcoHawk, AL-5000, Breath Alcohol Check, Bactrack	Semiconductor oxide sensor Electrochemical analyzer Fuel cell sensor	KHN Solutions Q3 Innovations Sentech Korea Akers Biosciences	2004 to 2009
Alkanes (C4-C20)	Grade 3 heart allograft rejection	Heartsbreath	GC-MS	Menssana Research	2004
H ₂	Lactose malabsorption	Micro H ₂	Electrochemical sensor	Micro Direct	1997, 2004
NO	Asthma, airway inflammation	NIOX, NIOX MINO	Chemiluminescence Electrochemical sensor	Aerocrine AB	2003, 2008
CO	Carbon monoxide poisoning	EC50 ToxCO +	Electrochemical sensor	Bedfont Scientific	2005
¹³ CO2	H. pylori	UBiT-IR300, POCone, BreathTek UBiT	Infrared spectrometer	Otsuka Pharmaceutical Meretek Diagnostics	2001 to 2004
CO ₂ , O ₂ , N ₂ O	Respiration	Nier IRMS, Tidal Wave, ABCA-NT	IRMS CF-IRMS	Consolid. Electrod. Corp Novametrix Medical Europa Scientific	1976, 1996 -1997
CO ₂ , O ₂ , N ₂ O, anesthetic agents	Respiration, Ventilation, Anesthetics	M-CAIOVX, M-COVX, M-MINIC, BSM-4100A, AG-920RA, BSM-5130A		Datex- Ohmeda GE Healthcare Nihon Kohden	2000 to 2003
¹³ CO ₂ , CO ₂	Ventilation, Respiration	C-CO ₂ , E- MINIC, OLG- 2800A, EMMA Capnometer, TG-970P	Colorimetric sensor Infrared sensor Infrared spectrometer Sensor technology	Marquest Medical GE Healthcare Nihon Kohden Phasein AB	2005 to 2009

Table modified (condensed) from: Mashir et al, Medical Applications of Exhaled Breath Analysis and Testing, PCCSU, 2011

FDA Approved Electronic Nose Tests

Detected Molecule		Trade Names	Techniques	Manufacturers	Approved
VOOs, organic acids	and the same of th	Osmetech Microbial Analyser (OMA – UTI)	Conducting polymer sensor array	Osmetech	2001
VOOs, organic acids	Bacterial Vaginosis (BV)	Osmetech Microbial Analyser (OMA - BV)		Osmetech	2003
		http://www.accessdata.f	da.gov/scripts/cdrh/devicesa	tfda/index.cfm?db=pmn&id	=K023677

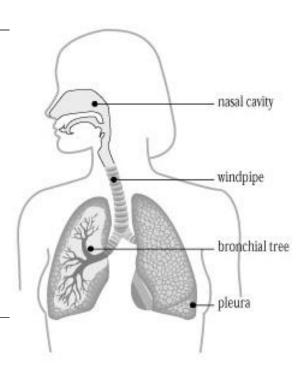
excerpts from the 510(k) Pre-market Notification for UTI

Clinical Performance Data

"Urine test results with the OMATM-UTI were compared to results using the Standard Culture technique (the "gold standard" for measurement of bacteria in urine) in 1038 urine samples from three Clinical Laboratories (two U.S. and one non-U.S. sites) for assessment of UTI."

"These data indicate that the performance values of the OMATM-UTI compare favorably with the predicate device, Uriscreen TM (K981084), which reported a sensitivity of 95%, specificity of 73%, and accuracy of 80%."

81.0%	(95% CI 73.7% to 87.0%)
83.1%	(95% CI 80.4% to 85.5%)
44.1%	(95% CI 38.1% to 50.2%)
96.4%	(95% CI 94.8% to 97.6%)
82.8%	(95% CI 80.3% to 85.0%)
	83.1% 44.1% 96.4%

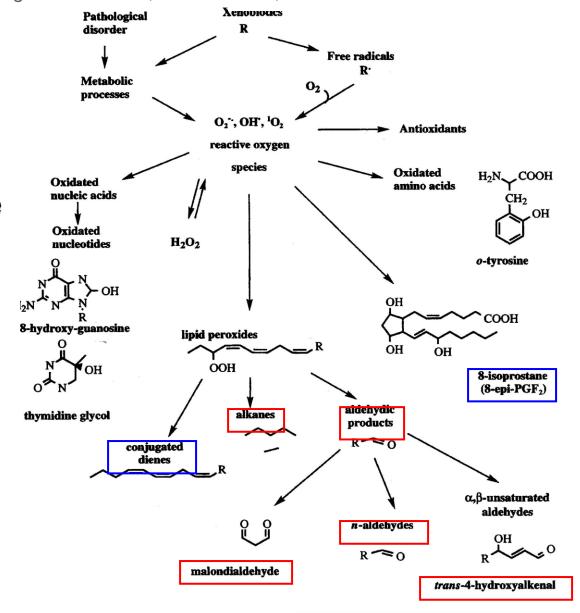


Breath Biomarkers

Disease	Compound as a disease marker	Analysis Instrument
Acute cardiac allograft rejection	Pentane	GC/FID
Myocardial infarction (MI)	Hydrocarbons	GC/FID
Asthma	Nitric Oxide	CL analyzer
COPD / ARDS	NO, CO	CL analyzer
Breast Cancer	Pentane	GC/FID
Diabetes	Acetone	GC/FID
Hemolysis	Carbon monoxide	EC CO analyzer GC/TCD
H. pylori infection	¹³ CO ₂ or ¹⁴ CO ₂	Isotope Ratio MS Isotope Ratio IR
Alcoholic liver disease	Pentane	GC/FID
Liver cirrhosis	Dimethyl sulfide	GC/FPD
	Volatile fatty acid	GC/FID
Weight Reduction	Acetone	GC/FID

Bacteria	Metabolites	
S. aureus	2-methylbutanol	
	3-methylbutanol	
Strept.	2-butanol	
pneumoniae	lactic acid	
H. influenzae	acetic acid indole	

VOCs from metabolism acids, alcohols, aldehydes, amines, ketones, hydrocarbons, sulfur compounds

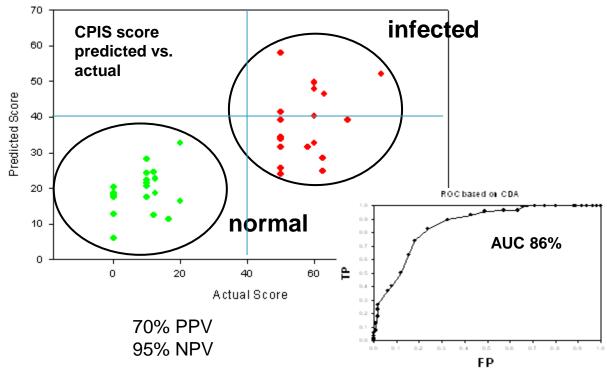


Example:

Free radicals produce measureable volatile products of oxidative stress

semivolatiles in breath condensate

volatiles excreted in breath



Ventilator Associated Pneumonia (VAP)

Reference: Hanson et al, Amer. Thoracic Society Meeting, 2002

Location: Univ. Pennsylvania Hospital

eNose: Cyranose 320

Result: measurements on exhaled breath compare favorably to the Combined Pulmonary Infection Score (CPIS) used to confirm VAP in the ICU

breath sampled from the expiratory limb of the ventilator circuit

eNose® is a registered trademark of Sensigent

Acute Rhinosinusitis

Reference: Thaler, et al, Use of an electronic nose to diagnose bacterial sinusitis.

Amer. Journal of Rhinology, v.20, 170-172, 2006

Location: Univ. Pennsylvania Hospital

eNose: Cyranose 320

sinus samples collected directly from subjects using a nasal breathing cup under normal breathing

	c=100, w=0.5		c=10, w=5	
Model	# correct	% correct	# correct	% correct
SVM	123/123	100	118/123	95.9
SVM+PCA(2)	123/123	100	113/123	91.9
SVM+PCA(3)	123/123	100	121/123	98.4

22 subjects 11 sinusitis 11 controls

samples collected July – Oct 2003

Other sampling methods tested

Nasal swabs (calgiswab) used to sample mucus from sinus infection "hotspots" Swabs placed in a vial and the headspace sampled after 2-3 minutes

Breath Sample Collection and Measurement for Lung Cancer and Pulmonary Disease Studies

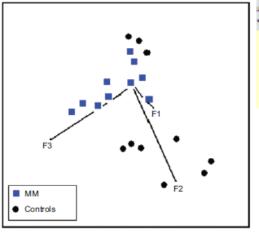
St. Vincent's Hospital, Sydney

Cleveland Clinic, USA

Lung Cancer - Mesothelioma

<u>Reference:</u> Chapman et al, *A breath test for malignant mesothelioma using an electronic nose.*

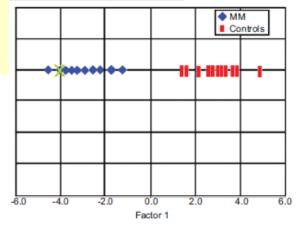
Eur. Respiratory Journal, v.40, 1-7, 2011.


Location: Univ. NSW Medical School, Sydney, Australia

eNose: Cyranose 320

TABLE 1 Subject demograp	phics and lung function of	iata		
	Controls	Mesothelioma	Asbestosis	Pleural disease
Subjects	42	20	5	13
Age yrs	66.5±14	69±10	70±10.5	70.9±8.2
Male/female	34/8	18/2	5/0	13/0
Nonsmoker/ex-smoker	30/12	8/12	1/4	5/8
FEV1 % pred	100.1 ±11.1	ND	72.2 ± 9.4***	90.2±17.5*
FVC % pred	94.4±9.4	ND	78.9±10.4***	82.7±18.6*
FEV ₁ /FVC % pred	93.4±14.3	ND	76.2±7.8*	80. 1±12.7*
IMIG stage 2/stage 1b	NA	19/1	NA	NA

80 subjects
20 mesothelioma
18 non-cancer
42 controls


Breathing unfiltered room air

ume in 1 s; % pred: % predicted; FVC: forced vital capacity; IMIG: International Mesothelioma Interest *: p<0.001, significant differences between subjects with as bestosis or pleural plaques compared with

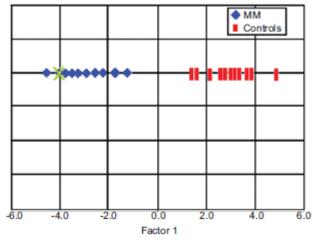
Training Set
10 mesothelioma
10 controls

PCA scores plot

CDA scores plot

Lung Cancer - Mesothelioma

<u>Reference:</u> Chapman et al, *A breath test for malignant mesothelioma using an electronic nose.*


Eur. Respiratory Journal, v.40, 1-7, 2011.

Location: Univ. NSW Medical School, Sydney, Australia

eNose: Cyranose 320

et nelioma 80 subjects total
20 mesothelioma
18 non-cancer
42 controls

Training Set 10 mesothelioma 10 controls

Identification Set #1

10 mesothelioma 18 non-cancer 32 controls

Result:

90% sensitivity 88% specificity

60% PPV 97.8% NPV relative to histologically proven mesothelioma

Identification Set #2

5 subjects retested after 2, 4 and 6 weeks 2 mesothelioma 3 controls

Result:

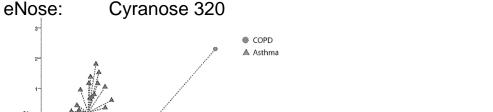
86% correct identification over 6 week period

Lung Cancer – Comparison of 5 Studies 2003 - 2010

Table 6
State of the art of the experiments for lung cancer diagnosis with a gas sensor array.

Referer	nce	Population	Classification	Performance	Markers study	Need for further details
[19]		Cancer: 35 Control: 18	Cancer Control	100% sens. 94% spec.	No	Other lung diseases Markers study Larger study population
[20]		Cancer: 14 Non-cancer: 62 Control: 45	Cancer Non-cancer	71.4% sens. 91.9% spec.	Yes	Classification of the different lung diseases Larger study population
[21]		Cancer: 49 Non-cancer: 73 Control: 21	Cancer Non-cancer Each lung pathol.	73.3% sens. 72.4% spec. 16.7–57.1% sens.	No	Low sensitivity to each lung pathology 3-way classification scheme
[24]		Cancer; 10 COPD: 10 Control: 10	Cancer vs. COPD Cancer vs. control	85% tot. 90% tot.	No	3-way classification scheme Larger study population
[***]		Cancer: 28 Non-cancer: 28 Control: 36	Cancer Non-cancer	79.3% sens. 89.3% spec.		Larger, international study Measurement and analysis optimization
Ref	Yr	Author	Study Location	eNose	Sensor Array	<u>Status</u>
[19] [20] [21] [24] [***]	2003 2005 2007 2009 2010	DiNatale et al Machado et al Mazzone et al Dragonieri et al D'Amico et al	Univ. Rome Cleveland Clinic Cleveland Clinic Univ. Leiden Univ. Rome	ROTV Cyranose 320 Univ. Illinois Cyranose 320 ROTV	metalloporhyrin QME polymer composite colorimetric polymer composite metalloporhyrin QME	commercial R&D commercial

Table 6 and [***] results from: D'Amico et al., An investigation on electronic nose diagnosis of lung cancer. Lung Cancer, v.68, 170-176, 2010.



Asthma and COPD – Internal Validation

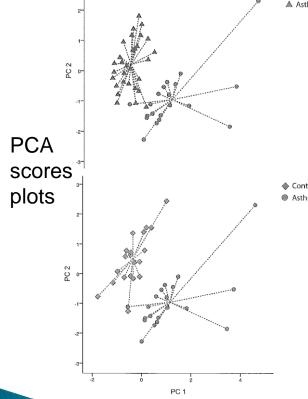
Reference: Fens et al, Exhaled breath profiling enables discrimination of chronic obstructive pulmonary

disease and asthma. Amer. J. Respir. Crit. Care Medicine, v.180, 1076-1082, 2009.

Location: Univ. Amsterdam Medical Center

90 subjects total

30 COPD


20 asthma

20 controls - smoking

20 controls - non-smoking

 Table 2
 Cross-validation values for the discrimination between COPD, asthma and controls.

Analysis	Cross validated accuracy (%)	p-value
Asthma-COPD	96	<0.0001
- Asthma-COPD smoking	97	< 0.0001
- Asthma-COPD ex-smoking	95	< 0.0001
- Asthma-COPD ICS	97	< 0.0001
- Asthma-COPD no ICS	95	< 0.0001
Asthma-Non-smoking controls	95	<0.0001
COPD-Smoking controls	66	0.006
- COPD smoking-smoking controls	72	0.018
- COPD ex-smoking-smoking controls	61	0.026
- COPD ICS-Smoking controls	70	0.024
- COPD no ICS-Smoking controls	65	0.047
Controls-Smoking controls	63	0.016

Asthma and COPD – External Validation

Reference: Fens et al, External validation of exhaled breath profiling using an electronic nose in the

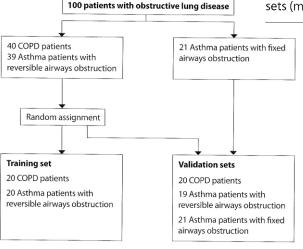
discrimination of asthma with fixed airways obstruction and chronic obstructive

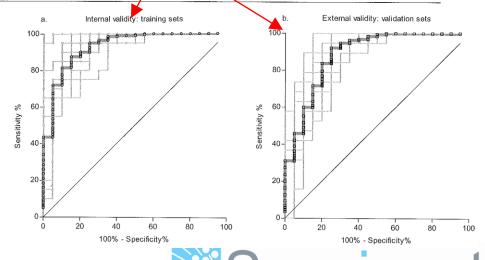
pulmonary disease. Clinical & Experimental Allergy, v.41, 1371-1378, 2011.

Location: Univ. Amsterdam Medical Center

eNose: Cyranose 320

Table 3 Validation results of the reproducibility of the diagnostic model for COPD vs classic and fixed asthma


100 subjects total


40 COPD

39 asthma – reversible

21 asthma - fixed

Set Acc p-value AUC 95% CI Sens Spec LR+ LR-Fixed asthma vs COPD validation 85 % < 0.001 0.91 0.84-1.00 86 % 80 % 4.3 0.2 sets (mean) Classic asthma vs COPD training 85 % < 0.001 0.93 0.85-1.00 88 % 85 % 0.2 sets (mean) Classic asthma vs COPD validation 85 % < 0.001 0.89 0.78-1.00 84 % 80 % 0.2 sets (mean)

Intelligent Sensing Solutions

Some Conclusions and Prognostications

Sensor Devices and Senor Array Devices have been approved by FDA for Screening Tests and Diagnostic Tests on breath and urine.

Multi-component signatures of disease can be used for simple and rapid Screening Tests with high NPV.

The number of conditions that can be screened will increase through continuing research. This work may also demonstrate potential for treatment monitoring and other uses.

Research into Breath Tests using Sensors and Sensor Array Devices continues to evolve rapidly:

- Efficacy has been/is being established in pilot and cross-sectional studies for several important conditions including LC, COPD/asthma and bacterial infection
- Independent research groups are finding similar results
- Collaborative studies are showing consistency across larger patient populations
- Results obtained with different Sensor Array Devices, operating on different physical and chemical principles, are yielding similar clinical findings in terms of sensitivity, specificity and predictive value.

